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The classical bulk model for isolated jets and plumes due to Morton, Taylor & Turner
(Proc. R. Soc. Lond. A, vol. 234, 1956, p. 1) is generalized to allow for time-dependence
in the various fluxes driving the flow. This new system models the spatio-temporal
evolution of jets in a homogeneous ambient fluid and Boussinesq and non-Boussinesq
plumes in stratified and unstratified ambient fluids.

Separable time-dependent similarity solutions for plumes and jets are found in
an unstratified ambient fluid, and proved to be linearly stable to perturbations
propagating at the velocity of the ascending plume fluid. These similarity solutions are
characterized by having time-independent plume or jet radii, with appreciably smaller
spreading angles (tan−1(2α/3)) than either constant-source-buoyancy-flux pure plumes
(with spreading angle tan−1(6α/5)) or constant-source-momentum-flux pure jets (with
spreading angle tan−1(2α)), where α is the conventional entrainment coefficient. These
new similarity solutions are closely related to the similarity solutions identified by
Batchelor (Q. J. R. Met. Soc., vol. 80, 1954, p. 339) in a statically unstable ambient,
in particular those associated with a linear increase in ambient density with height.

If the source buoyancy flux (for a rising plume) or source momentum flux (for a
rising jet) is decreased generically from an initial to a final value, numerical solutions
of the governing equations exhibit three qualitatively different regions of behaviour.
The upper region, furthest from the source, remains largely unaffected by the change
in buoyancy flux or momentum flux at the source. The lower region, closest to the
source, is an effectively steady plume or jet based on the final (lower) buoyancy flux
or momentum flux. The transitional region, in which the plume or jet adjusts between
the states in the lower and upper regions, appears to converge very closely to the
newly identified stable similarity solutions. Significantly, the predicted narrowing of
the plume or jet is observed. The size of the narrowing region can be determined from
the source conditions of the plume or jet. Minimum narrowing widths are considered
with a view to predicting pinch-off into rising thermals or puffs.

1. Introduction
The analysis of turbulent plumes and jets by Morton, Taylor & Turner (1956, herein

referred to as MTT56), has been widely applied (with 639 citations, 127 in the last
five years alone, despite the uncertain physical justification of its basic entrainment
assumption, and the recognition that in certain circumstances it is not valid). This
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is testimony to the ongoing relevance of their model and its suitability for current
applications. MTT56 used their models to predict steady Boussinesq (Boussinesq
1903) plume and jet shapes and their respective velocities, i.e. plumes where density
variations are sufficiently small that they are insignificant for the flow’s inertia, and
only play a role in the buoyancy. It was demonstrated that Boussinesq point-source
plumes (i.e. continuous sources of buoyancy alone) rising through a homogeneous
background fluid had conical envelopes and their mean centreline velocities scaled as
z−1/3, where z is the vertical distance from the source. In such flows the buoyancy
flux in the plume is constant with height. Jets (i.e. continuous sources of momentum,
but zero buoyancy) were also demonstrated to have conical envelopes (although with
a different angle of spread) and had mean centreline velocities which scaled as z−1.
(These similarity solutions had been identified earlier and independently by Zeldovich
1937.) The influence of stable ambient stratification on height of rise due to the fact
that the buoyancy flux is decreasing was also considered in MTT56.

Further advances in their model have been made in recent years. Rooney &
Linden (1996) and Woods (1997) considered steady non-Boussinesq plumes and were
able to derive expressions for the plume shape and velocity. Caulfield & Woods
(1998) considered a family of steady, yet unstable, similarity solutions for plumes
in non-uniformly stratified fluids. Several authors (e.g. Caulfield 1991; Caulfield &
Woods 1995; Hunt & Kaye 2001, 2005) have considered non-pure plumes (i.e. general
sources of volume flux, momentum flux and buoyancy flux). Non-pure plumes adjust
over some finite distance towards pure plume balance where the volume flux and
momentum flux are related in such a way that they appear to be associated with a
source providing buoyancy alone. This asymptotic pure plume is then traced back to
an effective ‘virtual origin’ that is in general distinct from the actual source location.
The location of this virtual origin depends on whether the source is ‘forced’, and thus
has an excess of momentum flux compared to a source in pure plume balance, or
‘lazy’, and thus has a deficiency of momentum flux compared to a source in pure
plume balance.

Hunt & Kaye (2005) also considered the effect of a constant-buoyancy release with
height, identifying a new class of steady similarity solutions, which had a slightly
narrower spreading rate than the conventional pure plume of MTT56. Bhat &
Narasimha (1996) considered an experimental analogue, where an initially neutrally
buoyant jet was subjected to volumetric heating between two planes perpendicular
to the axis of symmetry. They observed that the rate of spread of the jet reduced
‘drastically’. Carey, Sigurdsson & Sparks (1988), Woods & Caulfield (1992) and
Caulfield & Woods (1995) considered the related situation where the buoyancy
flux increased with height due to different processes (either particle fallout or non-
monotonic mixing) modelling the behaviour of volcanic eruption clouds. They also
observed narrowing of the plume as the flow adjusted.

However, there has been no previous study of the behaviour of a system where
the source conditions reduce in time, a situation that is much more likely to occur in
nature (e.g. rising thermals and plumes generated in deserts or descending heavy salt
plumes under sea ice). Motivated by the study of Hunt et al. (2003), we consider this
situation in the present paper. Critically, we shall assume that both an entrainment
assumption and an assumption of self-similarity at all heights can be made (see
Turner 1986). This requires that the time scale over which the bulk characteristics of
the plume change is sufficiently long compared to the characteristic time scales of the
turbulent processes which are being parameterized by the entrainment coefficient.
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Figure 1. A schematic diagram showing a plume with turbulent periphery with: plume radius
b, plume velocity w, entrainment velocity ue , typical eddy length scale Lt and typical eddy
velocity scale ut .

1.1. Present framework

Consider the schematic flow, due to a point source of buoyancy (or momentum),
shown in figure 1. The figure shows a rising plume (or jet) with radial coordinate
r , vertical coordinate z, characteristic radius b and characteristic vertical velocity
w. Furthermore, the ambient fluid has density ρ∞ whilst the plume has density ρ.
Entrainment occurs due to the turbulent eddies arising from the development and
breakdown of shear instabilities at the periphery of the ascending plume. At every
height within the plume, we assume that we can identify a characteristic radius b, a
function of z alone. We then make the assumption of self-similarity for the density
ρ(r, z) and vertical velocity w(r, z) in the plume, and so we assume that

ρ(r, z) = ρ(z)

[
fρ

(
r

b

)]
, (1.1a)

w(r, z) = w(z)

[
fw

(
r

b

)]
, (1.1b)

for some profile functions fρ , fw . For simplicity we assume ‘top-hat’ profiles, i.e.

ρ(r, z) =

{
ρ(z), r � b(z)
ρ∞(z), r > b(z),

(1.2a)

w(r, z) =

{
w(z), r � b(z)
0, r > b(z).

(1.2b)

The characteristic scales ρ(z) and w(z) can be thought of as being determined
by averaging spatially (at a given height within the plume) and temporally over
the turbulent fluctuations associated with the actual entrainment processes. These
turbulent eddies will typically have a scale bounded above by the primary Kelvin–
Helmholtz billows associated with the shear layer which develops between the plume
and the ambient fluid. These billows break down to smaller scales, in general
significantly less than b, and the primary physical mechanism of entrainment is
through the turbulence within the plume ‘nibbling’ external ambient fluid into the
plume itself (see Hunt, Eames & Westerweel 2006).
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The entrainment assumption states that the most significant dynamical bulk effect
of these turbulent processes, i.e. the flux of ambient fluid into the plume, can
be parameterized by a constant, α, relating the effective inflow velocity to the
characteristic vertical velocity in the plume. Although there is some evidence that
the value of α depends on the buoyancy of the plume, for clarity we assume that
it is a constant (also see Hunt & Kaye 2005). There is an implicit assumption
in this approach, relevant to the generalization of the entrainment assumption to
time-dependent flows. For the averaging to be well-defined, it is necessary for the
characteristic time scales of the turbulent eddies to be very much shorter than both
the characteristic time scale of the plume at any particular height and the adjustment
time of the source strength, ta . As shown schematically (figure 1), the turbulent eddies
have length scale Lt and velocity ut . Therefore these assumptions are equivalent to
Lt/ut � b/w, since b/w is the characteristic time scale for the plume evolution, and
Lt/ut � ta . These are statements of the assumption that the plume or jet is always
turbulent (if the plume or jet is close to a laminar–turbulent transition we might
expect the likelihood of pinch-off due to a reduction in driving source conditions
to increase due to reduced entrainment). For the assumption of self-similarity it is
required that Lt � b, i.e. the characteristic turbulent length scales are small compared
to that of the plume, as is expected on physical grounds.

1.2. Summary of paper

The rest of the paper is organized as follows. In § 2 we generalize the governing
equations for the evolution of the bulk characteristics of the isolated source to allow
for time-dependence, in particular, we make no Boussinesq assumption. In § 3 we
show that the equations support separable similarity solutions in a homogeneous
environment for both plumes and jets with fluxes which increase with height, and
decrease with time. In § 4 we also demonstrate that these solutions are stable in both
space and time to small perturbations, travelling at the local plume (or jet) velocity.

In § 5, we consider numerical solutions of the equations where the source conditions
for jets and both Boussinesq and non-Boussinesq pure plumes are reduced from an
initial to a final value. We find that the jet or plume converges to the time-dependent
similarity solution in a transitional adjustment region between a lower region,
corresponding to a steady similarity solution determined by the new source conditions,
and an upper region corresponding to a steady similarity solution determined by the
old source conditions. In §§ 6 and 7, we draw conclusions, focusing in particular on
the relevance of the observed narrowing to potential pinch-off – of weakening plumes
or jets – into thermals or puffs in realistic geophysical situations.

2. Derivation of governing equations
Following MTT56, we assume that the flow is axisymmetric with no swirl and that

diffusive processes can be ignored. We assume that the radial length scale is smaller
than the vertical length scale of the plume or jet and so vertical pressure gradients
may be ignored. We derive a self-consistent system of governing equations for a
plume or jet under the assumption that density and vertical velocity have a ‘top-hat’
distribution at any given height within the plume.

We identify the edge of the plume or jet with b and suppose that it is entraining
fluid horizontally at its edge with some radial velocity ue < 0. In order for the top-hat
model to remain self-consistent, it is required that the entrained fluid is instantaneously
distributed over the plume’s horizontal area at the given height with the local vertical
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velocity. At a given height z and time t , the fluid volume entrainment rate per unit
height into the plume or jet is − 2πbue, while the mass entrainment rate per unit
height is − 2πbueρ∞. The fact that the fluid entrained into the plume has zero vertical
velocity but must instantly adjust to the local velocity inside the plume constitutes a
sink in the momentum equation of strength 2πbueρ∞w. Hence within the plume or
jet, writing the axisymmetric fluid velocity u(r, z, t) = (ur, w), the following volume,
mass and momentum equations hold:

∇ · u = −2ue

b
,

Dρ

Dt
= −2(ρ∞ − ρ)ue

b
,

Dw

Dt
= g

ρ∞ − ρ

ρ
+

2ρ∞uew

bρ
. (2.1a–c)

We have an additional kinematic boundary condition at the edge of the plume given
by

ur |r=b− =
∂b

∂t
+ w

∂b

∂z
, (2.2)

noting that this necessarily introduces a discontinuity in ur at r = b since ur |b+
= ue

by definition.
We rewrite the mass flux equation (2.1b) in cylindrical polar coordinates, having

multiplied through by r and substituting in (2.1a), as

∂

∂t
(rρ) +

∂

∂r
(rurρ) +

∂

∂z
(rwρ) = −2ρ∞uer

b
. (2.3)

We then integrate (2.3) over r ∈ [0, b) and apply Leibniz’s rule, giving

∂

∂t

∫ b−

0

rρ dr − bρ
∂b

∂t
+ bρur |r=b− +

∂

∂z

∫ b−

0

rρw dr − bwρ
∂b

∂z
= −ρ∞ueb. (2.4)

Substitution of (2.2) into (2.4) and multiplying through by 2 yields the mass flux
equation

∂

∂t
(b2ρ) +

∂

∂z
(b2ρw) = −2ρ∞ueb. (2.5)

The buoyancy flux equation is found by rewriting (2.3) and adding and subtracting
equal terms to give

∂

∂t
[r(ρ − ρ∞)] +

∂

∂r
[rur (ρ − ρ∞)] +

∂

∂z
[rw(ρ − ρ∞)]

+ ρ∞r

{
1

r

∂

∂r
(rur ) +

∂w

∂z

}
= −rw

dρ∞

dz
− 2ρ∞uer

b
. (2.6)

We substitute for the term in curly brackets using (2.1a) and therefore (2.6) reduces
to

∂

∂t
[r(ρ − ρ∞)] +

∂

∂r
[rur (ρ − ρ∞)] +

∂

∂z
[rw(ρ − ρ∞)] = −rw

dρ∞

dz
. (2.7)

Integrating (2.7) over r ∈ [0, b) and applying Leibniz’s rule and the kinematic
boundary condition (2.2) gives the buoyancy flux equation

∂

∂t
[b2(ρ∞ − ρ)] +

∂

∂z
[b2w(ρ∞ − ρ)] = −dρ∞

dz
b2w. (2.8)

To find the momentum flux equation we rewrite the vertical Euler equation (2.1c)
in conservative form
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∂

∂t
(rρw) +

∂

∂r
(rρurw) +

∂

∂z
(rρw2)

− wr

{
∂ρ

∂t
+

1

r

∂

∂r
(rρur ) +

∂

∂z
(ρw)

}
= gr(ρ∞ − ρ) +

2ρ∞uewr

b
. (2.9)

We substitute for the quantity in the curly brackets using (2.3), giving

∂

∂t
(rρw) +

∂

∂r
(rρurw) +

∂

∂z
(rρw2) = gr(ρ∞ − ρ). (2.10)

Again, we integrate (2.10) over r ∈ [0, b) and apply both Leibniz’s rule and the
kinematic boundary condition (2.3) to get the momentum flux equation

∂

∂t
(b2wρ) +

∂

∂z
(b2w2ρ) = g[b2(ρ∞ − ρ)]. (2.11)

This closes the system with (2.5) and (2.8) for b, w and ρ if ρ∞(z) is known and
ue is modelled in terms of these variables. Note that the Boussinesq approximation
(Boussinesq 1903) has not been made, but corresponds to the distinguished limit
g → ∞, ρ → ρ∞ with the buoyancy force g(ρ∞ − ρ) remaining constant.

Various assumptions have been made in the literature as to the form of ue. MTT56
assumed for Boussinesq plumes ue = −αw, with constant α, so that the entrainment
into the plume was proportional to the centre velocity of the plume. Ricou & Spalding
(1961) observed experimentally non-Boussinesq behaviour with

ue = −α

(
ρ

ρ∞

)1/2

w, (2.12)

and this is the general form we will use, which is of course consistent with MTT56 in
the Boussinesq limit.

Although (2.5), (2.8), (2.11) and (2.12) provide a closed system with top-hat profiles,
it is convenient to define a true mass flux, πQ, a true momentum flux, πM , and a true
buoyancy flux, πF , where

Q(z, t) = b(z, t)2w(z, t)ρ(z, t), (2.13a)

M(z, t) = b(z, t)2w(z, t)2ρ(z, t), (2.13b)

F (z, t) = b(z, t)2w(z, t)g[ρ∞(z) − ρ(z, t)]. (2.13c)

It is important to stress that these quantities are valid expressions for both Boussinesq
and non-Boussinesq plumes. It follows that

w =
M

Q
, ρ = ρ∞

gQ

gQ + F
, b =

Q√
Mρ

, g′ = g
(ρ∞ − ρ)

ρ
=

F

Q
, (2.14)

where g′ is the ‘reduced gravity’. The buoyancy frequency of the ambient fluid, N , is
defined as

N2 = − g

ρ∞

dρ∞

dz
. (2.15)

Therefore, the governing equations (2.5), (2.8) and (2.11) together with the entrainment
assumption (2.12), the definitions of the fluxes (2.13) and the buoyancy frequency (2.15)
give

∂

∂t

(
Q2

M

)
+

∂Q

∂z
= 2αρ1/2

∞ M1/2, (2.16a)
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∂Q

∂t
+

∂M

∂z
=

QF

M
, (2.16b)

∂

∂t

(
QF

M

)
+

∂F

∂z
= −N2

(
Q +

F

g

)
, (2.16c)

three equations in the three unknowns Q, M and F . The system (2.16) describes
the full time-dependent behaviour for a rising† plume with a top-hat profile under
the entrainment assumption. Equations (2.16a, b) rely on conservation of mass and
conservation of momentum respectively. It is straightforward to demonstrate that
(2.16) has real eigenvalue, w, repeated three times. However, there exist only two
linearly independent eigenvectors and so the system is parabolic (see e.g. Whitham
1974). It follows that disturbances to the plume are advected upwards with the local
vertical velocity.

For the remainder of the paper, unless otherwise stated, we will consider the
ambient fluid to be unstratified, i.e. N ≡ 0 and ρ∞ is a constant.

3. Analysis: similarity solutions
We can identify several classes of separable similarity solutions to equations (2.16).

Sections 3.1–3.3 are summaries of existing results, while §§ 3.4–3.6 are new unsteady
results.

3.1. Boussinesq plume similarity solutions in an unstratified environment

The steady similarity solutions of a pure plume from a point source identified by
Zeldovich (1937) and MTT56 are, in an unstratified environment (N ≡ 0), using our
notation

Qu(z) =
6α

5

(
9α

10

)1/3

F
1/3
0 ρ2/3

∞ z5/3, Mu(z) =

(
9α

10

)2/3

F
2/3
0 ρ1/3

∞ z4/3, Fu(z) = F0.

(3.1)
At the source Qu = 0, Mu = 0 and Fu =F0.

Under the Boussinesq approximation, the similarity solution (3.1) predicts plume
radius, plume velocity and reduced gravity to be

bu(z) =
6αz

5
, wu(z) =

5

6α

(
9α

10

)1/3(
F0

ρ∞

)1/3

z−1/3, (3.2 a, b)

g′
u(z) =

5

6α

(
10

9α

)1/3(
F0

ρ∞

)2/3

z−5/3, (3.2 c)

with a plume spreading angle of tan−1(6α/5). In the immediate vicinity of the source,
this similarity solution is neither well-defined (as w → ∞) nor consistent with the
averaging assumptions discussed in § 1 since bu/wu → 0 as z → 0. Nevertheless, this
solution has proved particularly relevant and useful to the modelling of real plumes,
although it is only formally valid for sufficiently large z. Importantly, the velocity

† The case of the descending plume can be straightforwardly realized by reversing the sign of
gravity, i.e. replacing g with −g. However, the solutions to the governing equations then require
the non-Boussinesq plume radius to be complex, rather than real, in some regions, a discussion of
which is beyond the scope of the present paper. The profiles of downwards propagating Boussinesq
plumes and jets in an unstratified ambient are identical to their upwards propagating counterparts.
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increases with buoyancy flux (as F
1/3
0 ), but the radius is independent of buoyancy flux

(which would be expected on dimensional grounds).

3.2. Non-Boussinesq plume similarity solutions in an unstratified environment

If the Boussinesq approximation is not made then for the steady plume solutions
(3.1) the plume velocity and reduced gravity are unaffected and the plume radius is
given by

bu(z) =
6αz

5

{
1 +

(zB

z

)5/3
}1/2

, (3.3)

where

zB =
5

3

(
F 2

0

20α4ρ2
∞g3

)1/5

, (3.4)

as identified by Woods (1997). The length zB scales the distance over which non-
Boussinesq effects are important. Expansion of (3.3) demonstrates that in the near
field the shape of the plume depends critically on zB , and therefore the buoyancy flux,
F0, at the origin since

b(z) ∼ 6α

5
z

5/6
B z1/6 +

3α

5z
5/6
B

z11/6 + O
(
z7/2

)
. (3.5)

It should be recalled that the vertical pressure gradient was ignored in (2.1c) under
the assumption that the radial length scale was smaller than the vertical length scale.
Hence, we cannot have strict self-consistency between (3.5) and this assumption close
to the source. However, in the far field the shape of the plume becomes less influenced
by zB as

b(z) ∼ 6α

5
z +

3αz
5/3
B

5

1

z2/3
+ O

(
1

z7/3

)
. (3.6)

Since (3.6) contains no constant term, a virtual origin correction neither can nor needs
to be made to correct the far-field Boussinesq predictions for the non-Boussinesq case.

3.3. Plume similarity solutions in a statically unstable ambient fluid

Batchelor (1954) considered (as a model of convection) flows where the ambient
density increases with height, with a power law of a form equivalent to N2 = − N2

0 zp ,
where N0 is real and constant, with dimensions [L−p/2T −1], and p > −8/3 which
ensures that the buoyancy flux increases with height. The steady version of (2.16)
with the Boussinesq approximation then supports similarity solutions of the form

Q =
32α2ρ∞

[2(4 + p)(8 + 3p)]1/2(p + 6)2
N0z

3+p/2, M =
32α2ρ∞

(4 + p)(8 + 3p)(p + 6)2
N2

0 z4+p,

(3.7a, b)

F =
64α2ρ∞

[2(4 + p)]1/2(8 + 3p)3/2(p + 6)2
N3

0 z4+3p/2. (3.7c)

This gives a plume radius, plume velocity and reduced gravity of

b =
4αz

p + 6
, w =

{
2

(4 + p)(8 + 3p)

}1/2

N0z
1+p/2, g′ =

2

8 + 3p
N2

0 z1+p. (3.8)



Time-dependent plumes and jets 451

In particular, if p = 0 and hence the statically unstable ambient density has a linear
positive gradient (−N2

0 ) with height, the similarity solution takes the simple form

Q =
α2ρ∞

9
N0z

3, M =
α2ρ∞

36
N2

0 z4, F =
α2ρ∞

36
N3

0 z4,

b =
2αz

3
, w =

N0z

4
, g′ =

N2
0 z

4
.

⎫⎪⎬
⎪⎭ (3.9)

The velocity does not depend on the buoyancy flux, but rather on the ambient
stratification through the parameter N0 which, for p = 0, has dimensions [T −1].

3.4. Time-dependent Boussinesq plume similarity solutions

It is possible to identify separable time-dependent similarity solutions to (2.16), with
N ≡ 0, of the form

Q ∝ zqz tqt , M ∝ zmz tmt , F ∝ zfz tft , (3.10)

where qz, qt , mz, mt , fz and ft are unknown exponents chosen to satisfy (2.16). This
yields

Q =
2α2ρ∞

9

z3

t
, M =

α2ρ∞

9

z4

t2
, F =

α2ρ∞

9

z4

t3
, (3.11)

which is valid for all positive time. The similarity solution (3.11) predicts, in a
Boussinesq fluid, plume radius, plume velocity and reduced gravity given by

b =
2αz

3
, w =

z

2t
, g′ =

z

2t2
, (3.12)

and so the plume takes the form of a cone as in the steady solution (3.2). It is
important to note, however, that the spreading angle of the plume in this time-
dependent solution (3.12) is substantially narrower than that found for the steady
solution (3.1). Moreover, unlike the steady solution (3.2) the plume velocity predicted
by (3.12) increases with height z; the reduced plume radius can be viewed as a
consequence of this.

Since there is no conserved quantity that is independent of time, the predictions
provided by (3.12) are the most obvious and natural scalings for the plume radius
and velocity, if they are required to depend on both space and time. Interestingly,
unlike the MTT56 solutions, but just like the Batchelor (1954) solutions, the plume
velocity is not a function of the buoyancy flux, which is itself changing. Consideration
of (2.5), (2.11) and (2.12) shows that when the plume is Boussinesq and w ∝ z/t ,
it inevitably follows that b = 2αz/3, irrespective of the particular coefficient of w.
This suggests that a spreading angle of tan−1(2α/3) is a generic feature of plumes
where the velocity scales with z (and hence is not dependent on the buoyancy flux).
Furthermore, requiring this similarity solution to be consistent with the underlying
assumptions of entrainment and self-similarity reduces formally to the requirement
of considering sufficiently large z (for b to be adequately large) and sufficiently large
t (for the characteristic time scale of the plume, b/w, to be sufficiently large). These
are straightforward and natural generalizations of the formal consistency conditions
for the classical similarity solutions of MTT56.

It can be seen that the predictions of the time-dependent solution (3.11) are
extremely close to the solutions (3.9) that Batchelor (1954) found if N0 is identified
with 2/t . There is a clear analogy between reducing the buoyancy flux with time
at a particular point in space, and entraining fluid in a statically unstable ambient.
The additional buoyancy release with height in Batchelor (1954) mimics the effect
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of reducing the source buoyancy with time. In both cases the plume’s velocity, w,
does not scale with the buoyancy flux which, unlike the steady unstratified case,
will increase with height. In the time-dependent flow, fluid at a height z = zn passed
through z = z0 < zn at an earlier time, and so naturally the fluid now at z = zn has a
higher buoyancy flux that the fluid now at z = z0 < zn.

This solution (3.11) requires some time-dependent mechanism by which buoyancy
flux can increase with height, unlike Batchelor’s (1954) steady model where this occurs
through a statically unstable ambient stratification. As we see in § 5, this can also
occur through source conditions which decrease with time in a time-dependent flow.

Morton (1959) defined a non-dimensional parameter

Γ =
5

8α

(
Q

ρ∞

)2 (
M

ρ∞

)−5/2 (
F

ρ∞

)
, (3.13)

in the present notation, which describes the ‘laziness’ of a plume. At all heights
in a pure plume Γ =1, the mass, momentum and buoyancy fluxes are in balance.
If there is a deficiency of momentum flux, Γ > 1 and the plume is described
as distributed (Caulfield 1991; Caulfield & Woods 1995) or lazy (Hunt & Kaye
2001, 2005). Conversely, if there is an excess of momentum flux compared to pure
plume balance, then Γ < 1 and the plume is described as ‘forced’. For the time-
dependent similarity solution (3.11), Γ = 5/6 < 1, a constant. Therefore the time-
dependent solution is forced.

3.5. Time-dependent non-Boussinesq plume similarity solution

The similarity solution (3.11) is equally valid for non-Boussinesq plumes. In this case,
however, (3.12) becomes

b =
2αz

3

{
1 +

z

2gt2

}1/2

, w =
z

2t
, g′ =

z

2t2
, (3.14)

which shows the non-Boussinesq plume radius to be both time-dependent and always
greater than the Boussinesq plume radius. For early time and large distance from the
origin the non-Boussinesq plume radius differs greatly from the Boussinesq plume
radius. The velocity and reduced gravity of the non-Boussinesq plume are identical to
those of the Boussinesq limit. But as time increases, the non-Boussinesq plume radius
tends towards the Boussinesq plume radius for a given height (the density also tends
towards the Boussinesq limit).

3.6. Jet similarity solutions

The steady similarity solutions of MTT56, for a pure jet F ≡ 0 are

Qu(z) = 2αρ1/2
∞ M

1/2
0 z, Mu(z) = M0. (3.15)

The steady jet radius and jet velocity are therefore given by

bu(z) = 2αz, wu(z) =
M

1/2
0

2αρ
1/2
∞ z

, (3.16)

showing wu ∼ M
1/2
0 , with a spreading angle of tan−1 2α. The equations (2.16), with

N ≡ 0, again support a separable similarity solution of the form

Q ∝ zqz tqt , M ∝ zmz tmt , (3.17)
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giving

Q =
α2ρ∞

9

z3

t
, M =

α2ρ∞

36

z4

t2
. (3.18)

The jet radius and vertical velocity are therefore given respectively by

b =
2αz

3
, w =

z

4t
, (3.19)

with spreading angle tan−1(2α/3), an inevitable consequence of w being proportional
to z. Interestingly, the radius of the jet is the same as for the plume in (3.12), although
the velocity of the jet is only half that of the plume.

4. Stability properties of similarity solutions
We wish to establish the stability properties (cf. Caulfield & Woods 1998) of the

plume similarity solution given by (3.11) to identify whether plumes with closely
related bulk properties will ever converge to these similarity solutions. Therefore we
perturb the time-dependent plume similarity solution in the following manner:

Q =
2α2ρ∞

9

z3

t
[1 + εq(z, t)], M =

α2ρ∞

9

z4

t2
[1 + εm(z, t)], F =

α2ρ∞

9

z4

t3
[1 + εf (z, t)],

(4.1)

where ε � 1. Substitution of (4.1) into (2.16) yields, to first order in ε, the linear
system⎛

⎝ 4 −2 0
−1 0 0

1 −1 1

⎞
⎠ 2t

∂q
∂t

+

⎛
⎝2 0 0

0 −1 0
0 0 1

⎞
⎠ z

∂q
∂z

=

⎛
⎝−6 3 0

−4 6 −2
4 −4 0

⎞
⎠ q, (4.2)

where q = (q, m, f )T. We are particularly interested in perturbations which follow
fluid parcels and so we follow perturbations along characteristics travelling with the
similarity solution velocity (cf. § 2). For such characteristics 2t∂/∂t = z∂/∂z. Hence
defining ξ = log z, (4.2) reduces to⎛

⎝ 6 −2 0
−1 −1 0

1 −1 2

⎞
⎠ ∂q

∂ξ
=

⎛
⎝−6 3 0

−4 6 −2
4 −4 0

⎞
⎠ q. (4.3)

Hypothesizing that q = q0e
σξ , where q0 is the initial perturbation, we find that σ

satisfies

(σ + 1)(8σ 2 + 25σ + 12) = 0, (4.4)

which has three real negative solutions, which demonstrates that all linear
perturbations propagating with the plume velocity will decay in space and time
and so we expect to realize the similarity solution at least under some conditions. An
identical argument demonstrates that perturbations also decay for the jet similarity
solution (3.18), with the equivalent characteristic growth rate of σ given by the
quadratic term in (4.4).

Although these similarity solutions appear thus to be, at least conditionally, stable,
their relevance needs to be determined by direct solution of the governing equations.
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5. Numerical solutions
The governing system of PDEs is parabolic and is solved straightforwardly using

the scheme presented in the Appendix A. For both the plume and the jet models, the
steady solution corresponding to (3.1) or (3.16) is considered to have existed for all
negative time, and at t =0 the source conditions are changed.

The system’s dependence on both the entrainment coefficient, α, and the ambient
density, ρ∞, can be removed by introducing the scaled variables

Q̂ = (α2ρ∞)−2/3Q, M̂ = (α2ρ∞)−1/3M, F̂ = F, ẑ = z, t̂ = (α2ρ∞)−1/3t; (5.1)

however in the present calculations, for simplicity, α has been set to unity and ρ∞ has
been taken as 1 kgm−3.

5.1. Numerical plume solution

For plume problems, at t = 0 the buoyancy flux at the origin is reduced from F0 to
F1 over a time ta such that

F (0, t) =

⎧⎨
⎩

F0, t < 0,

f (t), 0 � t < ta,

F1, ta � t,

(5.2)

where f (0) = F0, f (ta) = F1 and 0 � F1 � F0. It is assumed that f is a ‘well-behaved’
arbitrary function.

A new ‘steady’ plume is established for t > ta with buoyancy flux F1 at the origin.
The similarity solution for the new ‘steady’ plume corresponding to (3.1) is the same
but with F0 replaced by F1. This leaves the plume radius unchanged in the Boussinesq
case with b = 6αz/5. In the non-Boussinesq case the plume radius is now given by
(3.3) but with F0 replaced by F1. Hence the new plume lies inside the envelope of the
old plume.

If it is assumed that the upper region of the plume remains largely unaffected by
changes at the source, then the top of the transitional region will be at a height
corresponding to a parcel of fluid rising with the original plume velocity, released at
time t =0. This height is given by

z0 =

(
10

9α

)1/2 (
F0

ρ∞

)1/4

t3/4. (5.3)

The height of the bottom of the transitional region is equivalently given by a parcel
of fluid released at t = ta with a buoyancy flux given by F1. This height is given by

z1 =

(
10

9α

)1/2 (
F1

ρ∞

)1/4

(t − ta)
3/4 , (5.4)

with the assumptions of entrainment and self-similarity. It follows that the size of
the transitional region increases with time. Formal consistency of the time-dependent
solutions in this transitional region is thus guaranteed for sufficiently large values
of t .

Figure 2 shows the plume shape for a Boussinesq plume with buoyancy flux at the
origin described by (5.2). The solution is not sensitive to the precise form of f (t),
but for this figure a linear decrease of the form f (t) = F0 − (F0 − F1)t/ta was used.
The buoyancy flux was turned down quickly, with ta = 10−4 s, from F0 = 1 kgm s−3
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Figure 2. The evolution of the plume radius profile for t = 0, 0.2, . . . , 0.8 s (dotted) and t = 1 s
(solid), with ta = 1 × 10−4 s, F0 = 1 kgm s−3 and F1 = 5 × 10−2 kg m s−3. The horizontal black
lines indicate the expected top, z0, and bottom, z1, of the narrowing region, at time t = 1 s,
defined by (5.3) and (5.4). The outer dashed line is the steady b = 6αz/5 solution, the inner
dashed line is the b = 2αz/3 solution corresponding to the transient similarity solution (3.12).

to F1 = 5 × 10−2 kgm s−3. The horizontal black lines are the predicted top, z0, and
bottom, z1, of the transitional region at time t = 1 s, given by (5.3) and (5.4). The
outer dashed lines are the steady Boussinesq plume shape predicted by MTT56, given
in (3.1). The inner dashed line is the steady Boussinesq plume shape predicted by the
transient similarity solution (3.12), and it can be seen that the plume is attracted to
the similarity solution in the transitional region. The buoyancy flux at high levels is
much higher than at lower levels, and so in the transitional region there is a vertical
increase in buoyancy flux, just as in the Batchelor (1954) model. However, once again
the solution converges to the time-dependent similarity solution in this transitional
region. It can be seen that the upper and lower regions sit on the steady envelope
predicted by (3.1). In the transitional region the lower part of the plume seems to
expand outwards a small amount before quickly adjusting to the transient similarity
solution. The matching at the upper end of the transitional region is slower but can
be seen to be largely centred around the height predicted by (5.3).

The other bulk characteristics of the plume (i.e. velocity, w, and reduced gravity,
g′) also exhibit three distinct regions of behaviour as shown in figure 3. Far from the
source, the velocity and the reduced gravity exhibit the expected power-law behaviour
for the steady similarity solutions (3.2) (w ∝ z−1/3, g′ ∝ z−5/3) associated with the
initial buoyancy flux. Similarly, near the source w and g′ exhibit the power-law
behaviour associated with the steady similarity solutions (3.2) for the final source
buoyancy flux. In the transitional region between z0 and z1 (defined in (5.3) and (5.4)
and marked with horizontal dashed lines in figure 3) w and g′ exhibit the scaling
associated with the new time-dependent similarity solution (3.12).

Since the numerical solution is in terms of Q, M and F , it is possible to interpret
the results in either Boussinesq (figure 2) or non-Boussinesq regimes. Figure 4 is the
same solution as in figure 2 but interpreted in a non-Boussinesq regime, with the
length scale zB for the initial plume indicated. It can be seen that the lower region
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Figure 3. (a) A log-log plot of the plume velocity, w, against distance from the source, z, at
time t = 0.2 s, corresponding to the first dotted line in figure 2. The three regions are shown
separated by the heights z = z0 and z = z1, indicated by the horizontal dashed lines. In the
three regions the velocity obeys the expected power laws, indicated by the dotted lines. (b) A
log-log plot of the reduced gravity, g′, against distance from the source, z, at the same time
as in (a). The three regions are shown separated by the heights z = z0 and z = z1. In the three
regions the reduced gravity obeys the expected power laws.
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Figure 4. The same evolution of the plume radius profile for t = 0, 0.2, . . . , 0.8 s (dotted) and
t = 1 s (solid), with ta =1 × 10−4 s, F0 = 1 kgm s−3 and F1 = 5 × 10−2 kg m s−3 as in figure 2 and
additionally g = 1 m s−2 and α =1. The envelopes given by (3.3) with (3.4) are shown labelled
‘Initial’ and ‘Final’ and the envelope given by (3.14) is shown labelled ‘Transient’.

now lies inside the envelope of the upper region, unlike the Boussinesq case. This
is because the length scale zB is smaller due to the reduced buoyancy flux at the
source. The transitional region lies inside both the upper and lower regions. Again
the adjustment at the bottom of the transitional region is much faster than at the top
of the transitional region. The envelope of the transitional region is time-dependent
in the non-Boussinesq case (3.14) and so is only appropriate for a given time.
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Figure 5. The evolution of the jet radius profile for t = 0, 0.2, . . . , 0.8 s and t = 1 s (solid),
with ta = 1 × 10−4 s, M0 = 1 kg m s−2 and M1 = 10−3 kg m s−2. The horizontal black lines refer
to the expected top, z0, and bottom, z1, of the transitional region, at time t = 1 s, given by (5.6).

5.2. Numerical jet solution

At t = 0 s the momentum flux at the origin is reduced from M0 to M1 over a time ta
such that

M(0, t) =

⎧⎨
⎩

M0, t < 0,

m(t), 0 � t < ta,

M1, ta � t,

(5.5)

where m(0) = M0, m(ta) = M1 and 0 � M1 � M0. It is assumed that m is a ‘well-
behaved’ arbitrary function. A new ‘steady’ jet is established with momentum flux M1

at the origin. The similarity solution for the new ‘steady’ jet corresponding to (3.15)
is the same but with M0 replaced by M1. The predicted jet radius remains the same,
b = 2αz. As before it is expected that the upper and lower regions of the jet will lie on
b = 2αz while the transitional region will tend towards b = 2αz/3, as given by (3.19).

The heights of the top and bottom of the transitional region for a jet, corresponding
to (5.3) and (5.4), are given by

z0 =
1

α1/2

(
M0

ρ∞

)1/4

t1/2, z1 =
1

α1/2

(
M1

ρ∞

)1/4

(t − ta)
1/2 . (5.6)

Figure 5 demonstrates that the jet behaves in a very similar manner to the plume.
The upper and lower regions adhere to the steady similarity solution predictions of
MTT56, namely b = 2αz. The transitional region narrows in to b = 2αz/3 as predicted
in § 3.6. The predictions for the location of the top and bottom of the transitional
region are poorer for the jet than for the plume, although they will act as good
estimates for the boundaries of the transitional region.

6. Discussion
In this paper we have generalized the bulk plume and jet models of MTT56 to allow

for time dependence. The new top-hat averaged system (2.16) allows the modelling
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of flows with time-dependent boundary conditions. In § 3 it was demonstrated that
these systems admit the steady solutions found in MTT56 and also a new class of
separable time-dependent similarity solutions. These solutions can be related to the
similarity solutions identified by Batchelor (1954) in a statically unstable ambient,
with a linear increase in density. In each case the plume velocity increases linearly
with height (and independently of the vertically increasing buoyancy flux) and hence
the plume radius b = 2αz/3. In both cases this linear increase of the plume velocity
with height is a natural consequence of the fact that there is no longer a necessity
for the plume velocity to scale with a (constant) value of the buoyancy flux. In each
instance an alternative time scale exists on which the vertical velocity can depend.
The linear stability of these solutions to perturbations travelling at the same speed as
the plume or jet velocity was demonstrated in § 4.

In both the Boussinesq plume and jet systems it was shown that the narrowing
region is bounded by an inner envelope given by b =2αz/3. Since the non-Boussinesq
plume radius is always greater than the Boussinesq plume radius, it follows that the
non-Boussinesq plume is also bounded by an inner envelope of b = 2αz/3. Critically,
it also follows therefore that within the confines of the present model, no pinch-off of
the plumes or jets can occur. Furthermore, even if the buoyancy flux of the plume or
the momentum flux of the jet is reduced to zero, the model predicts that the plume
and jet both remain attached to the origin, where the local velocity tends to zero.
Once a steady plume or jet is established it is impossible to create complete pinch-off
anywhere, within the confines of this model, by reducing the driving source conditions.
However, as is apparent in figure 2, when the buoyancy flux is reduced at the source,
the interface between the plume and the ambient has significantly shallower slope at
the edges of the transitional region between the two steady similarity solutions (i.e.
in the vicinity of z = z0 and z = z1). It is plausible that slopes of such a shallow angle
may significantly modify the actual entrainment processes. Therefore, pinch-off may
well occur due to the breakdown of the extremely simple entrainment assumption
at the heart of the time-dependent model presented here. It should also be noted
that the time scale, b/w, is intermediate between those of the initial and final steady
plumes over most of the transitional region. At the top of the transition region we see
a small initial reduction in b/w, but we believe that this is not sufficient to invalidate
the assumption that Lt/ut � b/w.

In § 5 it was demonstrated that these similarity solutions are highly relevant to
flows where the source buoyancy flux (for plumes) or source momentum flux (for jets)
decreases over finite time from an initial value to a final smaller value. The flow, as
shown in figures 2–5, manifests three distinct regions (similar to many other flows in
which the driving conditions undergo a transition between two steady states): a far
field with the characteristics of the conventional similarity solution of MTT56 given
by (3.1) (or (3.16)) with the original buoyancy flux (or momentum flux), a near field
with the characteristics of the MTT56 similarity solution with the final buoyancy flux
(or momentum flux), and a transitional narrowing region. This transitional region
typically approaches closely the new separable time-dependent solution identified in
§ 3.4 and given in (3.11) (or § 3.6 and given in (3.18)).

7. Conclusions
Our investigation of the properties of solutions to the time-dependent model

problem has several implications for the behaviour of real systems, which, as already
mentioned, will typically have time-dependent source conditions. First it appears that,
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within the confines of the model presented, plume-like behaviour is very robust to
decreases in source conditions (however, in the absence of any experimental evidence,
this should be treated with caution). If the source buoyancy flux drops to any non-zero
value, we expect plume-like behaviour to persist, with the main observable effect of
the reduction in source buoyancy flux being a transitional ‘necking’ region of reduced
but still generally positive spreading rate.

Secondly, for a general mass flux, momentum flux and buoyancy flux, if the source
buoyancy flux drops asymptotically to zero at a rate slower than t−3 (cf. (3.11), i.e.
a theoretical solution can be supported), it appears that at least formally, behaviour
of similarity solution type can persist, with a linear rate of spread with height of the
plume radius, and a plume velocity increasing with height linearly and decreasing with
time. However, it is unclear whether such a solution, with asymptotically decaying
source buoyancy flux, can persist in reality. As we have noted, in the immediate vicinity
of the source, the entrainment assumption and the assumption of self-similarity are
unlikely to be formally valid, and so as the plume weakens it is entirely conceivable
that turbulent processes (whose detailed dynamics are outside the scope of these
models) may at least intermittently overwhelm the plume-like behaviour and lead to
at least intermittent pinch-off. For example since the entrainment process is observed
to involve eddies with characteristic length scale bounded above by the plume width,
a plume with markedly decreased source buoyancy may be completely disrupted, near
the origin, by a turbulent eddy with characteristic length scale comparable with that of
the plume at that height. This issue is even more significant where the source buoyancy
flux drops to zero in finite time, as then the model predicts zero averaged vertical
velocity at the source. This is likely to be inconsistent with real turbulent motions. To
understand the behaviour of such systems, or indeed the physical realizability of the
predicted model flows discussed here, it will be necessary for example to consider the
properties of analogue laboratory experiments.

Conducting complementary laboratory experiments will pose a number of problems.
Clearly, ideal plumes and jets cannot be created in a laboratory environment and,
as such, some virtual origin problems will be introduced, making direct comparison
with the present theory difficult. However, comparison with numerical solutions to
the governing system of equations would perhaps be more straightforward. The other
significant experimental difficulty will be that unlike steady plume experiments where
a simple average over time can be used to calculate the mean plume statistics, many
identical experiments would need to be conducted to yield the relevant statistics by
ensemble averaging in the temporally varying case considered here.

Finally, the system of equations which governs plumes and jets where the driving
source conditions increase is of course identical to (2.16), although there are no
attracting similarity solutions for the case of increasing source strength. As discussed
in § 2, the system is parabolic and all disturbances travel at the local plume velocity.
Continuity ensures that the solutions to the system are never multivalued. Hence,
whilst disturbances can be, and indeed are in the case of increasing source strength,
amplified, no shock can form in the flow. Further discussion of plumes and jets with
increasing source conditions is beyond the scope of the present paper.

The authors would like to acknowledge Dr D.M. Leppinen and Dr J. N. McElwaine
for some very useful discussions, in addition to the referees who made some extremely
valuable comments. M.M. S. was funded under NERC award NER/A/S/2002/
00892.
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Appendix. Method of numerical solution
In order to solve (2.16) numerically, only perturbations to the steady solutions

are considered. Formulating the problem in this way reduces numerical errors as
all quantities remain O(1). For brevity the solution of the plume equations will be
described. The jet system can be solved using a simplification of the plume method.

Perturbation quantities Q̃, M̃ and F̃ are defined to be

Q(z, t) = Qu(z)Q̃(z, t), M(z, t) = Mu(z)M̃(z, t), F (z, t) = Fu(z)F̃ (z, t), (A 1)

where Qu, Mu and Fu are as in (3.1).
Defining Q̃ = (Q̃, M̃, F̃ )T, it follows from (A 1) and (2.16) that

∂ Q̃
∂t

= wu

⎛
⎜⎜⎜⎜⎜⎝

0 −1 0

M̃2

Q̃2
−2

M̃

Q̃
0

M̃F̃

Q̃2
− F̃

Q̃
−M̃

Q̃

⎞
⎟⎟⎟⎟⎟⎠

∂ Q̃
∂z

+
wu

3z

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

4

[
Q̃F̃

M̃
− M̃

]

8F̃ − 3
M̃2

Q̃
− 5

M̃5/2

Q̃2

M̃F̃

Q̃
− 5

M̃3/2F̃

Q̃2
+ 4

F̃ 2

M̃

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A 2)

where wu is the vertical velocity of the plume as defined in (3.2).
In order for all terms to remain O(1) near the origin, the second expression on

the right-hand side of (A 2) must vanish as z → 0. Hence the boundary and initial
conditions for the perturbation quantities are given by

Q̃ (0, t) = f (t)1/3, Q̃ (z, 0) = 1, (A 3a)

M̃ (0, t) = f (t)2/3, M̃ (z, 0) = 1, (A 3b)

F̃ (0, t) = f (t), F̃ (z, 0) = 1, (A 3c)

where f (0) = 1. This scaling of the time-dependent parts of M̃ and Q̃ relative to F̃ is
consistent on dimensional grounds and is a natural characteristic of all the similarity
solutions discussed in § 3. In the present paper a simple explicit Euler scheme was
used.

The solution space is defined to be (z, t) = [0, z�] × [0, t�]. The right-hand side of
(A 2) was evaluated at some time t and this was used to time step forward to
some t +	t . All spatial gradients were calculated using backward differencing, so no
information about the boundary was required at z = z� or t = t�.
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